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Abstract

The present study addresses the modal synthesis of dynamic responses or receptances, which can be considered as a

major issue in vibratory or acoustic design. A new method termed ‘‘method of orthocomplement’’ offers to increase the

accuracy of modal superposition. Two apparently independent domains are considered: first, the numerical control of

round-off errors in finite-dimensional models; second, the regularization of modal boundary discontinuities in infinite-

dimensional formulations. Concerning the finite-dimensional systems, using the proposed method in conjunction with

pseudo-inversion theorems, proves that ‘‘inertia relief corrections’’ remedy modal truncation problems in singular floating

systems, just as static corrections do for simply supported systems. The proof is based on hitherto unpublished expressions

of inertial contributions in terms of orthogonal projectors. It is worth noting that such expressions present by themselves

some technical interest. Modal formulae being delivered in closed form, a thorough analysis of errors becomes possible.

Special ‘‘spectrograms’’ are introduced to appraise the convergence of ordinary or modified modal sums. When applied to

infinite-dimensional modal boundary discontinuities, the method of orthocomplement eliminates the Gibbs oscillations

that affect the ordinary spectral sums, and produces the same corrected formulae as it did for finite-dimensional examples.

Effective solutions for the computation of vibratory or acoustic boundary receptances, are developed in that way. The

paper once again illustrates how orthogonal projectors can contribute to the determination of static corrections. Future

applications to coupling problems, model reduction and modal synthesis are briefly presented at the end of the text.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Aims and scope

In the preliminary steps of NVH design, modification formulae such as

hHB CðoÞ ¼ HB CðoÞ �HB AðoÞ HA AðoÞ þ hðoÞð Þ
�1HA CðoÞ (1)

can be used to discuss the evolution of the transfer function from C to B , when a device of receptance h is
inserted at A on the current structure. In this way, series of heavy computations are replaced by short matrix
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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iterations, or in the simplest cases, by analytical discussions based on complex homography and Moebius
transformation [1–7].

Although the question has already been addressed in earlier references [8], the paper presents a method,
termed the ‘‘method of orthocomplement’’, to control the accuracy of modal superposition during synthesis of
dynamic responses or receptances, such as HB’C, HB’A, HA’A, HA’C, where A, B, C, D can be
�
 primary dofs as they naturally appear in the model;

�
 secondary dofs that are defined as linear combinations of the preceding ones, for a better understanding of

structural analysis and design (least squares global rotations or translations, finite difference approxima-
tions of local strains and stresses);

�
 and, more generally, collections-or clusters-of dofs of the preceding types.

In Section 1.2 an introduction to spectral decompositions presents what will be here called ‘‘ordinary’’,
‘‘hybrid’’ and ‘‘accelerated’’ modal series. In variance with some other papers, it is shown that modal
truncation pathology in simply supported finite-dimensional frames can be remedied by static condensation
[9–11]. The method of orthocomplement was initially designed to extend the preceding conclusion to more
general systems showing 0Hz singularities or ‘‘modal boundary discontinuities’’ [12,13]. The method, that
takes its origin in the operations of ‘‘static lifting’’ of [14–16], is sketched out in Section 1.3. It consists in
splitting up the set of algebraic or differential relations that are satisfied by the remainder in a pseudo-static
sub-problem and a nested ordinary modal one. Provided additional conditions are introduced to ensure
existence and uniqueness of solutions, one is led to closed-form modal representations, from which static or
pseudo-static corrections can be deduced.

Section 2 of the paper relates to general finite-dimensional systems. The proposed method is first illustrated
in Section 2.1 on simply supported systems. It is seen to deliver the same conclusions as before. Free finite-
dimensional systems are considered in Section 2.2. Because of the 0Hz singularity, the study has to be worked
out in conjunction with three solid appendices on pseudo-inversion [17–18], denoted A, B, C at the end of the
paper. The main result lies in the expression of the static ‘‘inertia relief’’ contribution as

ð1�PMÞðlPþ KÞ�1ð1�PM Þ
T, (2)

where ‘‘joker’’ l is a totally arbitrary non-zero real number, and where P and PM are orthogonal projectors
on the nullspace, Ker(K), of the singular stiffness matrix K (P for the canonical Euclidian metric, and PM for
the metric induced by the mass matrix M). As a practical consequence it is shown in Section 2.3 that using the
inertia relief option [19] of FEM codes remedies modal truncation problems in floating frames, just as static
condensation does in simply supported ones. Numerical examples are introduced in Section 2.4. It is proposed
to use ‘‘Spectrograms’’, that is to say plots of cumulated modal sums, to appraise the efficiency of truncation
corrections. Thereby a classification becomes possible from ‘‘shallow’’ variables based on a limited number of
modes (least-squares mean displacements of structural regions), to ‘‘deep’’ variables requiring a great number
of modal terms for their synthesis (isolated primary dofs or local finite differences).

Examples of extremely deep degrees of freedom are given by finite-dimensional approximations of
differential problems with modal boundary discontinuities of the type considered by Kim and Kang [20].
Fig. 1, for example, relates to a two-dimensional (2D) acoustic cavity driven by a boundary loudspeaker.
Diagram (a) shows the solution obtained by direct computation and diagram (b) the poor result obtained by
an ordinary modal superposition. The whole difficulty lies in that rigid boundary modes are required to
reconstitute a non-zero boundary velocity. Lower numerical modes, which almost exactly satisfy the set of
modal equations, are not able to take the non-zero boundary condition into account. Upper modes, on the
contrary, are poor numerical approximations that can develop significant boundary velocities. The modal
solution thus appears as possible, but with higher-order modes than usual and at the price of numerical
accuracy. Accelerated series together with static or inertia relief terms can clearly be expected to give better
results than ordinary modal series.

A complete formulation is proposed in Sections 3 and 4 within the scope of infinite-dimensional differ-
ential systems. A striking feature, in that context, is that modal boundary discontinuities are associated with
‘‘Gibbs phenomena’’. As in the original discussion in 1898 by Michelson, Love, Gibbs and Poincaré, diagram
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Fig. 1. Inaccurate modal rendition of the acoustic field developed at 400Hz by a source at the boundary of a 2D cavity: (a) direct finite-

element response, (b) sum of ordinary modal contributions up to 1130Hz.

Fig. 2. Gibbs phenomenon for Fourier (a) or modal series (b).
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(a) of Fig. 2 shows how ordinary partial Fourier sums can seize on a discontinuous Heaviside function, and
announce the capture and resolution of the discontinuity by a familiar overshoot and ringing precisely known
as the Gibbs phenomenon [12]. Diagram (b) on the same figure, relies on the fixed–free vibrating rod
considered by Kim and Kang [20]. The plots, which have been drawn with a considerably reduced pace, show
partial ordinary spectral sums approaching the tension at the free end of the rod. They feature the same non-
decaying Gibbs oscillations as before. This is the mark that the modal series satisfies the boundary condition in
a weak mathematical sense, but neither pointwise nor uniform modes of convergence can be invoked.

In Section 3, the direct computation of the theoretical orthocomplement for the problem of Kim and Kang
leads to modified spectral formulae that generalize the finite-dimensional ones and eliminate the ‘‘essential’’
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boundary discontinuity and the related Gibbs phenomenon. ‘‘Natural’’ boundary conditions can be handled
in a similar way, and it seemed worthwhile to illustrate this on a rod with an imposed displacement at one end
and free conditions at the other.

In Section 4, the method of orthocomplement is applied to the computation of receptances at the boundary
of an acoustic cavity. Interesting finite element results are obtained by using the pseudo-inverse

ð1�PQÞðlPþHÞ�1, (3)

where the acoustic finite element matrices, H, Q, take the place of matrices K, M of Section 2. Although the
main subject is receptance synthesis, a connection with more general studies on modal synthesis [21–31] is
proposed in Section 5.

Because it would unnecessarily complicate the notations, damping is not explicitly taken into account. As
usual in structural design, it is supposed that applicable practical formulae can be found by changing natural
square frequencies o2

k to their complex conventional values o2
kð1þ iaÞ—with a, the hysteretic proportional

damping factor.
1.2. An introduction to spectral decompositions for finite simply supported systems

1.2.1. Ordinary spectral series

Let N̄ denote the total number of dofs in a given finite vibrating system—typically up to several
million in modern finite element applications. Let K and M denote the associated N̄ � N̄ positive
and symmetric stiffness and mass matrix. In the simplest case when the system is simply supported,
there exists at least one M-orthonormal system of N̄ eigenmodes Wm and N̄ eigenfrequencies om40,
solution to

ðK�Mo2
mÞWm ¼ 0. (4)

Those eigenmodes and eigenfrequencies allow for the synthesis of any dynamical response, according to

ðK�Mo2Þx ¼ f3xðoÞ ¼
XN

m¼1

WmWT
m

o2
m � o2

f. (5)

The right hand sum will be termed as the ordinary modal-or ‘‘spectral’’-series. Although the term ‘‘series’’ is
used here in the restricted sense of finite series, it must be noted that large values of N̄, that are common in
practical applications, require approximations by means of partial summations

xðoÞ ’
XN

m¼1

WmWT
m

o2
m � o2

f (6)

with a number N of modes drastically smaller than N̄.
1.2.2. Accelerated spectral series and static term

Most certainly, truncation affects modal superposition at high frequencies corresponding to the neglected
modes. It should be noted, however, that the static response, x(0), and its truncated ordinary approximation
already differ with

eNð0Þ ¼
XN

m¼Nþ1

WmWT
m

o2
m

f. (7)

To avoid that difficulty, it has been since long proposed using the identity

xðoÞ ¼ xð0Þ þ ½xðoÞ � xð0Þ�. (8)
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At the price of a supplementary static resolution, a class of ‘‘counter-balanced’’ formulae can then be
derived

xðoÞ ¼ K�1f þ
XN

m¼1

1

o2
m � o2

�
1

o2
m

� �
WmWT

mf ’ K�1f

þ
XN

m¼1

1

o2
m � o2

�
1

o2
m

� �
WmWT

mf. ð9Þ

Each modal contribution in the right member can be rearranged as

o2

o2
m

1

o2
m � o2

WmWT
mf. (10)

This only differs from the ordinary contribution in that each term is multiplied by the squared ratio of the
observation frequency to the current eigenfrequency. Upper modal contributions being minimized, the series
will be termed an accelerated modal series.

1.2.3. Mixed spectral series and pseudo-static terms

To ensure exactness at 0Hz without modifying the magnitudes of the contributions of lower modes, it can
be proposed to fix an arbitrary integer, N, and then to split up the dynamic response in two terms

xðoÞ ¼ xN ðoÞ þ eN ðoÞ

¼
XN

m¼1

WmWT
m

o2
m � o2

f þ
XN

m¼Nþ1

WmWT
m

o2
m � o2

f. ð11Þ

The algebraic identity xðoÞ ¼ xNðoÞ þ ½xð0Þ � xN ð0Þ� þ ½eN ðoÞ � eN ð0Þ� then brings

xðoÞ ¼
XN

m¼1

WmWT
m

o2
m � o2

f þ K�1f �
XN

m¼1

WmWT
m

o2
m

f þ
XN

m¼Nþ1

o2

o2
m

WmWT
m

o2
m � o2

f (12)

and, since KCm ¼ o2
mMCm,

xðoÞ ¼
XN

m¼1

WmWT
m

o2
m � o2

f þ K�1 1�
XN

m¼1

MWmWT
m

 !
f þ

XN̄

m¼Nþ1

o2

o2
m

WmWT
m

o2
m � o2

f. (13)

Formulae(12), (13) define mixed—or ‘‘hybrid’’-spectral series, the three constituents of which are an
ordinary modal sum up to the order N; a pseudo-static term based on the static stiffness matrix and the
first N modes; an accelerated spectral series from the order N to the maximum order N. On close inspection,
formulae (9) and (12) are indeed the same, save for a slight rearrangement of terms, while formulae (12)
and (13) can easily be deduced one from the other by the ‘‘transmigration’’ of modal terms inside or outside
the pseudo-static second member. The interest of mixed spectral series lies in their ability to appear in
theoretical developments. Owing to the impossibility of migration of 0Hz terms, it will be seen, however, that
a minimal mixed modal formula is the ultimate solution to the singular equations that govern any floating
structure.

1.2.4. Practical formulations

Hundreds of thousands of degrees of freedom are quite common in modern structural analysis. Therefore,
assembling the full frequency-dependent matrix H(o) must often be viewed as a totally unfeasible task. Unlike
stiffness matrices, receptances can fortunately be tailored and cut to the right dimensions without
heavy condensations. Concerning the transfer from one cluster A to another cluster B, for example,
the global relation x ¼ Hf reduces to xB ¼ HB AfA; with HB A ¼ PBHPT

A, where PB, PA are sparse
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canonical projectors:

PAp;q ¼
0 if ðpaqÞ _ ðqeAÞ;

1 if ðp ¼ qÞ&ðq 2 AÞ:

(
(14)

The direct computation of HA’B by formula (5) leads to

HA BðoÞ ¼ PA

XN

m¼1

WmWT
m

o2
m � o2

PT
B

¼
XN

m¼1

ðPAWmÞðPBWmÞ
T

o2
m � o2

þ 1
XN

m¼Nþ1

ðPAWmÞðPBWmÞ
T

o2
m � o2

U, ð15Þ

where the double brackets on the right contain the modal remainder for N retained modes. After the N

retained eigenmodes and eigenfrequencies have been assembled in a modal matrix U ¼ W1W2 � � �WN½ �, and a
diagonal matrix X, Omm ¼ om, it is interesting to introduce

DðoÞ ¼ ðO2 � o21Þ�1, (16)

thereby bringing formula (15) to the matrix form

HA BðoÞ ’ FADðoÞFT
B, (17)

where FA ¼ PAF, FB ¼ PBF are reduced samples of the global modal matrix. Left-hand blocks in Fig. 3
describe as neatly as possible the overall transformation to be performed from standard modal analysis to
local postprocessing. Practical limitations on storage capacities make that it is often necessary to invoke a
special ‘‘set condensation’’ command of the finite element code, in order to provoke the preliminary sampling,
F! FS, of the full modal matrix to the union, S ¼ A [ B [ C [D [ � � �, of all clusters of interest.

Hybrid or simply accelerated expressions of response functions take one or another equivalent form

xðoÞ ¼
XN

m¼1

WmWT
m

o2
m � o2

f þ K�1 1�
XN

m¼1

MWmWT
m

 !
f

þ 1
XN

m¼Nþ1

o2

o2
m

WmWT
m

o2
m � o2

fU, ð18Þ

xðoÞ ¼
XP

m¼1

WmWT
m

o2
m � o2

f þ K�1 1�
XP

m¼1

MWmWT
m

 !
f

þ
XN

m¼Pþ1

o2

o2
m

WmWT
m

o2
m � o2

f þ 1
XN

m¼Nþ1

o2

o2
m

WmWT
m

o2
m � o2

fU, ð19Þ

xðoÞ ¼ K�1 f þ
XN

m¼1

o2

o2
m

WmWT
m

o2
m � o2

f þ 1
XN

m¼Nþ1

o2

o2
m

WmWT
m

o2
m � o2

fU. (20)

Owing to the non-standard pseudo-static term 1�
PP

m¼1MWmWT
m

� �
f, using mixed formulae (18), (19) is

not really recommended. On the contrary, Eq. (20) brings the matrix approximation

HA BðoÞ ’ UA DðoÞ �Dð0Þ½ � UT
B þ PAK

�1PT
B. (21)

which is indeed a suitable practical formula provided the global inverse matrix, K�1, be replaced by the local
compliance, GS S, that results from successive static resolutions.
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Fig. 3. Data flowchart for finite-dimensional fixed systems.
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1.3. An introduction to the method of orthocomplement

The ‘‘method of orthocomplement’’ is an alternative method of deriving mixed modal formulae. It consists
in a direct analysis of the orthocomplement eN in the basic projection formula

x ¼
XN

m¼1

hWmjxiMWm þ eN ¼
XN

m¼1

WmWT
m

o2
m � o2

f þ eN , (22)

where Wm, m ¼ 1,y,N, designates an M-orthonormal system of eigenmodes and h:j:iM denotes the scalar
product induced by the mass operator M.
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The analysis proceeds in three steps:
(a)
 Forward step—The set of equations that characterizes eN is split into two nested sub-problems, in such a
way that eN is written as eN ¼ gN+qN, where
� gN is the solution to a pseudo-static problem (A), with the only static operator in the first member;
� qN is the solution to a dynamical problem (B), with the full dynamical operator in the first member and

the pseudo-static solution gN in the second member.
The consistency of the decomposition rests on the solvability of problem (A). Checking that point is thus the
major technical task at the considered stage.
(b)
 Coordination step—Once a solution to problem (A) is found, rather than assembling problem (B) to
compute qN, it is suggested to proceed as follows:
� in case the static operator is not singular, the modal projections of qN can be expressed in terms of the

corresponding projections of gN: hWkjqNi ¼ f hWkjgNi. Surprisingly the projections hWkjgNi are directly
computable, and the modal projections of qN can then be found by composition of the two preceding
sets of formulae.
� in case the static operator is singular, and the solvability conditions are fulfilled, solution gN is not

unique and both problems (A) and (B) suffer from indetermination. Normal elastic modes at positive
frequencies can bear the same treatment as before, but the s rigid modes at 0Hz would provoke
divisions by zero. A set of complementary relations hWkjgNi ¼ 0; k ¼ 1; . . . ;s can then be added to

problem (A), that renders its solution gN unique, and annihilates the corresponding projections
hWkjqNi ¼ f ðhWkjgNiÞ; k ¼ 1; . . . ;s. All other projections being known, a complete solution becomes
possible.
(c)
 Backward step—The solution is finally obtained by assembling the ordinary modal sum, the solution to the
pseudo-static problem and the spectral development of qN. It must be noted that the last term will appear
as an accelerated modal series in all the following examples.
2. Study of general finite systems by the method of orthocomplement

2.1. The simple case of fixed finite systems

A first application of the method can now be performed on fixed finite systems, with non-singular stiffness
matrices K. The results have already been derived in Section 1.2. The development is just intended to illustrate
the general methodology, and to provide guidelines to study more complicated singular systems.

(a) Forward step: As a consequence of the equations of motion, the orthocomplement is seen to satisfy

ðK�Mo2ÞeN ¼ f �
XN

m¼1

ðK�Mo2Þ
WmWT

m f

o2
m � o2

¼ f �
XN

m¼1

Mðo2
m � o2Þ

WmWT
m f

o2
m � o2

. (23)

This last problem can be split up into two nested sub-problems, A, B, according to the following scheme:

ðK�Mo2ÞeN ¼ 1�
XN

m¼1

MWmWT
m

 !
f3eN ¼ gN þ qN

KgN ¼ 1�
PN

m¼1

MWmWT
m

� �
f ðAÞ

ðK�Mo2ÞqN ¼Mo2gN ðBÞ

*
. (24)

Since detK6¼0, the decomposition is coherent and both sub-problems have a unique solution.
(b) Coordination step: Problem (B) is a classical dynamical problem whose solution has the spectral

representation

qN ¼
XN

m¼1

o2

o2
m � o2

WmWT
mMgN . (25)
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The M-projections on the kth eigenmode of qN and gN are linked by

WT
kMqN ¼

XN

m¼1

WT
kMWmWT

mMo2gN

o2
m � o2

¼
XN

m¼1

o2

o2
m � o2

WT
kMWm|fflfflfflfflffl{zfflfflfflfflffl}
dkm

WT
mMgN ¼

o2

o2
k � o2

WT
kMgN (26)

where the transient dkm denotes the Kronecker symbol.
According to Eq. (24), the solution to problem (A) writes

gN ¼ K�1 1�
XN

m¼1

MWmWT
m

 !
f (27)

and it should be possible to compute modal projections WT
kMgN by using the modal identities

WT
kM ¼ ð1=o

2
kÞW

T
kK; as a matter of fact, this brings

WT
kMgN ¼ WT

kMK�1f �
XN

m¼1

WT
kMK�1MWmWT

mf ¼
1

o2
k

WT
kKK

�1|fflfflfflfflffl{zfflfflfflfflffl}
CT

k

f �
1

o2
k

XN

m¼1

WT
kKK

�1|fflfflfflfflffl{zfflfflfflfflffl}
CT

k

MWmWT
mf

¼ . . . ¼
1

o2
k

WT
k f �

1

o2
k

X
mpN

WT
kMWm|fflfflfflfflffl{zfflfflfflfflffl}
dkm

WT
mf ¼

0 if 1pkpN ;

1

o2
k

WT
k f if k4N:

8><
>: ð28Þ

By composition of the two preceding sets of formulae, the M-projections of qN are given by

WT
kMqN ¼

o2

o2
k � o2

WT
kMgN ¼

0 if kpN;

o2

o2
k

1
o2

k
�o2 W

T
k f if k4N:

8><
>: (29)

(c) Backward step: Assembling the solutions to problems (A), (B) and the ordinary modal sum up to order N

then brings the result of Section 1.2 again

x ¼
XN

k¼1

WkW
T
k

o2
k � o2

f þ K�1 f �
XN

m¼1

MWmWT
mf

 !
þ
XN

k¼Nþ1

o2

o2
k

WkW
T
k

o2
k � o2

f. (30)

2.2. Floating finite systems

The case when detK ¼ 0 is now considered.
(a) Forward step: This is the same computation as before, with the slight difference, that s rigid modes
�s ¼ 1, 3 or 6—must now be carefully distinguished:

eN ¼ gN þ qN

KgN ¼ 1�
Ps

m¼1

MWmWT
m �

PN
m¼sþ1

MWmWT
m

 !
f ðAÞ

ðK�Mo2ÞqN ¼Mo2gN ðBÞ

*
(31)

Although detK ¼ 0, problem (A) is soluble. As a matter of fact, equation (A) imposes on operator K to map
solution gN to j ¼ f �

PN
m¼1MWT

mWmf. The problem is therefore soluble iff j 2 ImðKÞ or, according to
Lagrange’s lemma of Appendix A, iff j ? KerðKÞ. The s independent rigid modes, Wk; k ¼ 1; . . . ; s, give
precisely:

WT
kj ¼ WT

k f �
XN

m¼1

WT
kMWmWT

k f ¼ WT
k f �

XN

m¼1

dkmWT
k f ¼ WT

k f �WT
k f ¼ 0, (32)

which shows the last orthogonality condition to be fulfilled.
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(b) Coordination step: Problem (B) is a classical dynamical problem whose solution has the spectral
representation

qN ¼ �
Xs
m¼1

WmWT
mMgN þ

XN

m¼sþ1

o2

o2
m � o2

WmWT
mMgN . (33)

The M-projections of qN and gN are therefore linked by

WT
kMqN ¼

o2

o2
k � o2

WT
kMgN (34)

with the especially important relations WT
kMqN ¼ �WT

kMgN ; k ¼ 1; . . . ;s.

In contrast to the regular case, modal projections WT
kMgN cannot be easily computed since:
�
 matrix K has no inverse and expression (27) of gN must be replaced by an adequate pseudo-inverse
equivalent;

�
 the elimination condition that was used in Eq. (28), WT

kM ¼ o�2k WT
kK, only works when ok 6¼0, but not

when Wk is one or the other of the s rigid modes.

It is now of some importance to remark that matrix K being of rank N � s, problem (A) needs s additional
independent relations for its solution to be determined. At the same time, such a set of s relations corresponds
to what should be added to the set of known projections of gN to definitely fix the solution to problem (B).

A quite natural choice of additional conditions is

WT
kMgN ¼ 0; 1pkps. (35)

Problem (A) can then be reformulated as

KgN ¼ 1�
Ps

m¼1

MWmWT
m �

PN
m¼sþ1

MWmWT
m

 !
f

WT
kMgN ¼ 0; k ¼ 1; . . . s

9>>=
>>;. (36)

Owing to the fact that rigid modes Wk; 1pkps, form a basis of the nullspace of K, Eq. (36) define a unique
solution

gN ¼ Ky½M� 1�
Xs
m¼1

MWmWT
m �

XN

m¼sþ1

MWmWT
m

 !
f (37)

in terms of the pseudo-inverse Ky½M� of Appendix B. Using the complete mathematical expression developed in
Appendix B yields

gN ¼ ð1�PMÞðlPþ KÞ�1 1�
Xs
m¼1

MWmWT
m �

XN

m¼sþ1

MWmWT
m

 !
f, (38)

where l is an arbitrary non-zero number, and PM, P denote the orthogonal projectors on the set of all rigid
modes, respectively, for the M-metric and for the canonical Euclidian one.

The s first modal projections of qN are zero, since Eqs. (34) and (35) yield

WT
kMqN ¼ �WT

k MgN ¼ 0; k ¼ 1; . . . ;s. (39)

To prepare for the computation of other projections, it can be remarked that, for any index k4s, x ¼
Ky½M�KWk is the only solution to Kx ¼ KWk that satisfies WT

pMx ¼ 0, 1ppps. But, since Wk itself trivially
satisfies the above algebraic equation and orthogonality conditions, it is possible to write x ¼ Wk and therefore
use the relation

Ky½M�KWk ¼ Wk for any index k4s (40)

in place of the relation K�1K ¼ 1 of the regular case.
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As a consequence, for any k4s, the kth M-projection of gN can be computed as follows:

WT
kMgN ¼ WT

kMKy½M�f �
XN

m¼1

WT
kMKy½M�MWmWT

mf ¼
1

o2
k

WT
mKK

y½M�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
WT

k

f �
1

o2
k

XN

m¼1

WT
kKK

y½M�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
WT

k

MWmWT
mf

¼ � � � ¼
1

o2
k

WT
k f �

1

o2
k

XN

m¼1

WT
kMWm|fflfflfflfflffl{zfflfflfflfflffl}
dkm

WT
mf ¼

0 if sþ 1pkpN;

1

o2
k

WT
k f if k4N:

8><
>:

From Eqs. (34), (35), the modal projections of qN are given by

WT
kMqN ¼

0 if 1pkpN;

o2

o2
k

1

o2
k � o2

WT
k f if k4N:

8><
>: (41)

(c) Backward step: It results from Eq. (41), that the solution to problem (B), qN, appears as an accelerated
series, with the same expression as in the regular case of Section 2.1. The same thing can be said of the pseudo-
static term, except that the inverse K�1 is replaced by the pseudo-inverse Ky[M]. As a conclusion, the complete
dynamical response can be given as

x ¼
XN

k¼1

WkW
T
k

o2
k � o2

f þ Ky½M� f �
XN

m¼1

MWmWT
mf

 !
þ
XN

k¼Nþ1

o2

o2
k

WkW
T
k

o2
k � o2

f, (42)

where the pseudo-inverse Ky[M] is defined by Eq. (36).

2.3. Practical computation: inertia relief

After truncation formula (42) gives

x ’
XN

m¼1

WmWT
m

o2
m � o2

f þ Ky½M� f �
Xs
m¼1

MWmWT
mf �

XN

m¼sþ1

MWmWT
m f

 !
. (43)

Just as in the regular case, the problem lies in the non-standard assembling of the pseudo-static second
member problem. A good remedy was found earlier to consist in the ‘‘transmigration’’ of modal terms outside
the right-hand parentheses. This perfectly works for modal contributions at strictly positive frequencies, since
by (40), it is possible to write

Ky½M�
XN

m¼sþ1

MWmWT
mf

 !
¼
XN

m¼sþ1

1

o2
m

Ky½M�KWmWT
mf ¼

XN

m¼sþ1

1

o2
m

WmWT
mf. (44)

The rule being not valid for the s rigid modes at 0 frequencies, it should be clear that

x ’
XN

m¼1

1

o2
m � o2

WmWT
mf �

XN

m¼sþ1

1

o2
m

WmWT
mf þ Ky½M� 1�

Xs
m¼1

MWmWT
m

 !
f, (45)

is the best that can be done.
A slight rearrangement of terms then yields

x ’
�1

o2

Xs
m¼1

WmWT
mf þ

XN

m¼sþ1

o2

o2
m

1

o2
m � o2

WmWT
mf þ Ky½M� 1�

Xs
m¼1

MWmWT
m

 !
f (46)
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from which it becomes possible to state that the dynamic response x of any singular floating system can be
approached by the superposition of
�
 an ordinary modal sum for the s rigid modes;

�
 an accelerated sum for ‘‘elastic’’ modes of orders greater than s; and

�
 a pseudo-static term based on the s rigid modes.
It should be noted that Eq. (42), before truncation, gives the remainder as an accelerated series.
The pseudo-static term remains to be interpreted. For the sake of readability, mathematical theorems on

pseudo-inversion have been gathered in three appendices—labelled A, B, C—at the end of the text. Appendix
C addresses the Laurent expansion at 0Hz of the dynamic response in a singular floating system. It contains
the following interpretation of the pseudo-static term:

Ky½M� 1�
Xs
m¼1

MWmWT
m

 !
f ¼

coefficient of o0 in the Laurent expansion of x

inertia relief response at 0Hz

ð1�PMÞðlPþ KÞ�1ð1�PM Þ
Tf

:

8><
>: (47)

As already mentioned in presenting formula (38), l is an arbitrary non-zero number, and P, PM, are
orthogonal projectors onto the vector set of rigid motions, respectively, for the canonical Euclidian metric and
that induced by the mass matrix M.

Although there is no difficulty in evaluating the ordinary modal sum at 0Hz, another interesting result
is that

Xs
m¼1

WmWT
mf ¼

coefficient of o�2 in the Laurent expansion of x

rigid body acceleration field at 0Hz

PT
Mf ¼ SðSTMSÞ�1STf

8><
>: (48)

with S, the matrix whose columns span the set of rigid motions.
For the purpose of computing the transfer matrix from a cluster A to a cluster B, formulae (45) or (46) can

be rewritten as

HA BðoÞ ’ UADðoÞUT
B �UAD

�ð0ÞUT
B þ PAð1�PMÞðlPþ KÞ�1ð1�PM Þ

TPT
B, (49)

which is the exact counterpart of formula (21) for fixed systems. The notation D(o) still refers to the diagonal
Dmm ¼ ðo2

m � o2Þ
�1, while D� is the restriction of the preceding to non-zero eigenfrequencies:

D�mm ¼
0 if 1pmps;

Dmm if sþ 1pmpN :

(
(50)

The 0Hz modal terms being not accelerated, the preceding expression of HA’B can be given as an example
of irreducible hybrid spectral formulation.

The analytical expression PAð1�PM ÞðlPþ KÞ�1ð1�PMÞ
TPT

B of the inertia relief receptance is obviously
of some mathematical interest and will probably serve to further theoretical developments. It can be applied to
small finite element models in view of building benchmark tests to detect whether one or the other of the many
‘‘black boxes’’ that are devoted to modal corrections in modern engineering environments, correctly works or
not. It has already been remarked however, that non-standard manipulations of huge matrices, as can be
K or M, cannot be recommended in practical applications. Projectors P, PM, not only are huge matrices but
also full ones. This is the reason why, in practice, a direct determination of the inertia relief receptance should
be preferred to any other solution.

The computations can be performed as indicated in Fig. 4, with a preliminary condensation on the union
S ¼ A [ B [ C [D [ � � � of preselected clusters of interest. The inertia relief receptance IS’S is quite similar to
the static GS’S of Fig. 3. Column m is here the inertia relief response measured throughout S for a unit
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Fig. 4. Data flowchart for finite-dimensional singular floating systems.
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excitation f at location m, that is to say the solution to

Kx ¼ f � f iner;

WT
kMx ¼ 0; k ¼ 1; . . . ; s:

(
(51)

There is theoretically no difficulty to implement such a solution. As a matter of fact, most finite element
codes now propose their own versions of the inertia relief option. Moreover, special operations, such as
assembling matrix IS’S, can be programmed through the user-oriented language which, on the model of
Nastran DMAP, is made available by the code. Unfortunately, in place of the correct ‘‘0Hz filtration’’ above,
earlier versions of the inertia relief option imposed a zero displacement on an arbitrary isostatic support.
Because such variants are clearly not suitable for the present purpose, they must be discarded as soon as they
are identified. It is worth noting that, in the proper task of identification, benchmark tests based on Eq. (49),
on the model of the following example, can be of great interest.
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2.4. Numerical examples

(a) Free and fixed chains: The inertia relief formula (49) has been numerically tested on the example
of an aluminium bar in free longitudinal vibration. The bar is of length L ¼ 2m and section A ¼ 10�4m2. As
shown in Fig. 5, the discrete model is a 1D chain consisting of N ¼ 100 lumped masses m and N � 1 ¼ 99
springs k. Mechanical constants are given by m ¼ ðmAL=NÞ ¼ 5:4� 10�3 kg and k ¼ ðEA=ðL=N � 1ÞÞ ¼
3:465� 108 Nm�1, where m ¼ 2700 kgm�3 and E ¼ 7� 1010Nm�2, respectively, correspond to the mass per
unit of volume and the Young modulus of aluminium.

Table 1 lists the first 10 eigenfrequencies. The 0-frequency at the beginning of the list corresponds to the
singularity of order s ¼ 1 that affects the considered one-dimensional (1D) floating system. The 0-eigenvalue
is associated with a set of constant eigenvectors representing uniform translations of the chain. Because this
Fig. 5. One hundred-mass free–free chain for the simulation of the longitudinal vibrations of an aluminium rod.

Table 1

Eigenfrequencies of the free–free chain

Mode number 1 2 3 4 5 6 7 8 9 10

Frequency (Hz) 0 1272.9 2545.5 3817.4 5088.4 6358.1 7626.3 8892.6 10157 11418

Fig. 6. Receptance at the free end of the free–free chain: J exact; ___ 10-mode inertia relief accelerated sum; - - - 10-mode ordinary sum.
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Fig. 7. Clamped–free chain.

Table 2

Eigenfrequencies of the clamped–free chain

Mode number 1 2 3 4 5 6 7 8 9 10

Frequency (Hz) 633.3 1899.7 3165.7 4430.9 5695 6957.7 8218.8 9477.8 10734 11989
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simple set is but the kernel, Ker(K), of the stiffness matrix, there is no difficulty to compute the P- and
PM-projectors of the general theory. As a result, Fig. 6 pictures the free end receptances that are obtained
from a direct computation, a 10-mode ordinary superposition, and a 10-mode solution to Eq. (49). Clearly, the
ordinary technique does not bear comparison with the inertia relief approach.

Fig. 7 gives a second example, obtained by fixing one end of the preceding chain. Although much more
simple than the former, this example presents the interest of being the finite-dimensional counterpart of Kim
and Kang’s continuous rod. Table 2 lists the first 10 eigenfrequencies. The 0-frequency does not appear in the
list, which is not surprising since the fixed chain is a regular mechanical system relevant to Section 2.1. Modal
corrections are thus much easier than above and only require inversions in place of pseudo-inversions. Besides
additional diagrams that will be explained in the next paragraph diagram d in Fig. 8 pictures the free end
receptances that are obtained from a direct computation, a 10-mode ordinary superposition, and a 10-mode
solution to Eq. (21). The conclusion is the same as before. However, since no general law can be inferred from
a method that consists in comparing the results of two computations to decide for one technique or the other,
the question of a priori error estimations must now be posed.

(b) Spectrograms: Modal expressions at any frequency o, in free or fixed systems, have been found to be
partial sums of general series whose remainders are those of ordinary and accelerated modal series:

�n ¼
XN

m¼nþ1

C2
m

o2
m � o2

; rn ¼
XN

m¼nþ1

C2
m

o2
m � o2

o2

o2
m

, (52)

where Cm is the modal component of order m along the considered degree of freedom; and om, the
corresponding eigenfrequency. Prior to any heavy static or inertia relief solution, it can thus be proposed to
check the convergence of ordinary and accelerated representations by plotting the partial sums

S1 ¼
Xn

m¼n0

C2
m

o2
m � o2

; S2 ¼
Xn

m¼n0

C2
m

o2
m � o2

o2

o2
m

(53)

against the number npN of retained modes, in the most unfavourable case when o is the maximum frequency
of interest. Indeed, from a physicist’s point of view, the slighter the slopes, dS1/dn, dS2/dn, grow, the smaller
the remainders, en, rn, can be considered. Following the terminology of experimental physics, the preceding
sums, or associated graphs, will be termed ‘‘spectrograms’’. Diagrams (a), (b), in Figs. 8 and 9, show first
examples of S1- and S2-spectrograms. To avoid resonances and obtain smooth non-decreasing positive
diagrams, it can be highly recommended to choose the lower index, n0 , such that ooon0oon. This is not a
difficulty, since, as far as consistent analyses are concerned, the maximum eigenfrequency, oN, is notably
greater than the upper frequency, o. That apart, it should be noted that curves are scaled down to the
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Fig. 8. Clamped–free chain (a)(b)(c) S1- , S2- , S0-spectrograms (J receptance at the end of the rod; + receptance in the middle of

the rod; � 10-point average receptance at the free end). (d) Receptance at the free end (J exact; ___ 10-mode accelerated sum; - - - 10-mode

ordinary sum).

J.-M. Lagache et al. / Journal of Sound and Vibration 310 (2008) 313–351328
standard interval [0,1] in order to be easily compared one with the other. Lastly, there is few to comment on
the reason why crossing a predefined threshold triggers off a unit downward shift, except that this graphical
trick has been found to make a quick count of modes possible.

Owing to the fact that ordinary and corrected sums of order n differ by the constant

�nð0Þ ¼
XN

m¼nþ1

C2
m

o2
m

, (54)

a third spectrogram is introduced on diagrams (c)

S0 ¼
Xn

m¼n0

C2
m

o2
m

, (55)

whose ‘‘stabilization’’ , in the above sense, means that static corrections are of minor interest.
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Fig. 9. Clamped–free chain (a)(b)(c) S1- , S2- , S0-spectrograms ( J receptance at the end of the chain ; + local flexibility in the middle of

the chain; � local flexibility at the free end). (d) Receptance at the free end (J exact; - - - 50-mode ordinary sum, ___ 70-mode ordinary

sum, � -50 mode accelerated sum, + 70-mode accelerated sum).
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Although the phenomena could be imagined as depending exclusively on the frequency range, Figs. 8 and 9
show how various dofs respond differently to modal truncation.

(c) Classification of dofs: Three series of spectrograms are plotted in Fig. 8: the first series, on diagram (a),
consists of three S1-spectrograms; the second series, on diagram (b), shows three S2-spectrograms; and, lastly,
diagram (c) shows a third series of three S0-spectrograms. Inside each series, markers ‘‘o’’, ‘‘+’’, and ‘‘� ’’,
respectively, indicate the receptance, x100/f100, at the end of the chain; the receptance, x50/f50, in the middle of
the chain; a little more complicated 10-point average end-receptance, that can be defined as x/f,
with x ¼ ðx100 þ x99 þ � � � x91Þ=10, and f100 ¼ f99 ¼ � � � f91 ¼ f =10. Diagrams (a), (b), (c) in Fig. 9, are
of the same nature as above. Marker ‘‘o’’ still designates the receptance at the free end, which is taken as a
reference. Markers ‘‘+’’ and ‘‘� ’’ correspond to two flexibilities x/f, that are evaluated, respectively: at the
end of the chain, with x ¼ x100 � x99, and f100 ¼ �f99 ¼ f ; and in the middle of the chain, with x ¼ x50 � x49,
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and f50 ¼ �f49 ¼ f . It is worth noting that the two first receptances of Fig. 8 refer to ‘‘primary’’ dofs, while the
third receptance relates to x ¼ ðx100 þ x99 þ � � � x91Þ=10, which is an example of ‘‘least squares’’ secondary dof.
In turn, the two flexibilities considered in Fig. 9 relate to ‘‘finite differences’’ secondary dofs.

Prior to any discussion, it seems quite necessary: first, to explain how to synthesize the matrices, P, that give
secondary dofs, or vectors of such entities, as linear combinations, n ¼ Px, of primary ones; second, to
comment on using the same formulae, HA BðoÞ ¼ PAHðoÞPT

B, for secondary receptances as for primary ones.
Concerning the first point, it can be remarked that the 2 flexibilities in Fig. 9 can indeed be defined by finite
differences matrices, P ¼ ½0 � � � 1 � � � 0 � � � � 1 � � � 0�, with 1 and �1 at the adequate locations. To illustrate now
the construction of least squares dofs, it is possible to consider a group, G, of P primary dofs, and try to
express the displacement on G, xG, as a combination of QoP pre-selected displacements, the coefficients being
precisely the considered secondary dofs. If SG denotes the corresponding P�Q shape-matrix, the problem
consists in finding the Q-vector, x, that minimizes jjSGn� xGjj. Appendix A defines the solution to this
problem as n ¼ PGxG, with PG ¼ ðS

T
GSGÞ

�1ST
G, and it remains to complete matrix PG by an adequate number

of 0-columns, to bring the Q-vector of secondary dofs to the announced form, n ¼ Px ¼ ½PG � � � 0 � � ��x. For
example, the 10-point average displacement above, x ¼ ðx100 þ x99 þ � � � x91Þ=10, is indeed the least squares

mean rigid motion at the end of the chain, with SG, a 10-vector of 1’s , and ðS
T
GSGÞ

�1ST
G ¼ ð1=10Þ½1 1 � � � 1�. The

next step looks like reading a matrix by columns, after it has been filled up by rows: the point is indeed to make
dual variables u explicit, together with algebraic identities hPxjji � hxjPTji. It becomes then possible to
explain the role of adjoint matrices by comparing these relations to the physical balance conditions /n|uS�
/x|fS that can be imposed on energy-conservative least squares ‘‘best approximations’’, or that are invoked in
finite differences computations by virtue of the virtual work principle. The comparison results in f ¼ PTj with

the first consequence that secondary receptances obey composition rules of the type jB�!
PT

B
f�!

H
x�!

PA
nA, and

take therefore the announced canonical form, PAHðoÞPT
B. Another consequence is that secondary dofs can be

handled by means of modal matrices UA ¼ PAU.

Despite this common algebraic structure, a great diversity can be observed, that takes its origin
in physical reasons behind the numerical model. For example, the 10-point average displacement at
the free extremity of the chain in Fig. 8 is seen to be easily calculable with a limited number of modes, and
even with an ordinary modal superposition. Indeed, alternations of signs in the primary modal components,
make that high order modes with wavelengths notably shorter than the 10-point region, cannot signifi-
cantly contribute to the final result. Decisive contributions being concentrated on a few lower order
modal terms, the considered dof can be said of ‘‘small modal depth’’, or, equivalently, be called a ‘‘shallow’’
dof. Measuring the modal depth can be of great interest in engineering applications, since least
squares variables are intended to deliver rapid and robust evaluations of simplified models of structural
modifications.

By contrast, the two flexibilities in Fig. 9, are examples of ‘‘deep’’ dofs. First, S1-spectrograms on diagram
(a) reveal the inability of ordinary modal sums to reconstitute the local flexibilities, either at the end or in the
middle of the chain (with the somehow amazing observation that the comparison between the end- and the
mid-flexibilities is largely in disfavour of the latter). Second, S2- and S0-spectrograms show that considerably
better results can be obtained by using accelerated series. The end flexibility being nevertheless much more
difficult to obtain than the middle one, it is suggested to describe such a dof as ‘‘extremely deep’’. The
prognostication is confirmed on diagram (d), where various ordinary or accelerated modal sums can be
compared with the exact value k�1 ¼ ð3:465� 108Þ�1 ¼ 2:886� 10�9 mN�1. In the considered [0,5000Hz]
frequency range, the usual rule would suggest to retain modes up to twice the maximum frequency, that is to
say, up to10,000Hz. The 9th and 10th eigenfrequencies being respectively found in Table 2 at 10,734 and
11,989Hz, about 10 modes should be thus retained. It is clear that this choice is notably insufficient for the
kind of dofs under examination.

The difficulty has already been identified as resulting from a modal boundary discontinuity in the
underlying infinite-dimensional formulation. According to the aforementioned discussion, there is nothing
surprising about that accelerated series deliver considerably better results than ordinary ones. This answer
cannot however be considered as definitive unless direct studies are carried out, in an appropriate infinite-
dimensional context.
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3. On the so-called inability of free interface modes in representing stress resultants near the free interface

3.1. Regarding a recent paper by Kim and Kang [20]

A recurrent question in spectral theory is to control what happens when zero modal quantities, fm, are
requested, by mathematical developments themselves, to satisfy a non-zero boundary condition F ¼ Sgmf m.
Such a question dilutes itself in finite-dimensional approximations, and can only be observed on the infinite-
dimensional differential equations. In a recent paper, from which the title of the present section has been
taken, Kim and Kang focused on the longitudinal vibrations of a fixed–free bar driven by a force F, as
illustrated in Fig. 10. The difficulty at the loaded end, x ¼ L, lies in that zero modal derivatives c0mðLÞ ¼ 0 are
intended to express the inhomogeneous boundary condition

F ¼ EASamc
0
mðLÞ. (56)

There is some exaggeration in speaking of ‘‘impossibility’’ or ‘‘inability’’ as the authors do. The detailed
drawing of the Gibbs oscillation at the end of Kim and Kang’s rod in Fig. 2, illustrates how homogeneous
modes can bring inhomogeneous boundary conditions under mathematical control.

Boundary discontinuities and modal truncation have been recognized in Section 1.1 as intimately intricate
topics. The present section precisely shows how using the method of orthocomplement to the solution of Kim
and Kang’s problem, eliminates the Gibbs phenomenon, and produces improved accelerated modal
representations.

It is worth noting that submitting an ordinary spectral series to the 0-shift, f ðoÞ ¼ f ð0Þ þ f ðoÞ � f ð0Þ,
formally leads to the latter result. The subtlety of the present proof, however, lies in that no reference is made
to the litigious serial summation

P1
m¼1hcmjUicmðxÞ.

3.2. Formulation of the problem

For a harmonic excitation force Feiot the steady-state longitudinal response can be written
uðx; tÞ ¼ UðxÞeiot, provided U(x) be the solution to the boundary problem

U 00ðxÞ þ
o2

c2
UðxÞ ¼ 0; Uð0Þ ¼ 0; U 0ðLÞ ¼

F

EA
, (57)

where c ¼
ffiffiffiffiffiffiffiffiffi
E=m

p
denotes the wave propagation velocity in the bar; o, the angular frequency; m the density;

E the Young’s modulus; A, L the material area and length of the bar; and where, on evidence, quotes designate
derivations d/dx with respect to the abscissa along the rod.

The clamped–free bar normal modes, cm, and eigenfrequencies, om, satisfy the following equations:

c00mðxÞ þ
o2

m

c2
cmðxÞ ¼ 0; cmð0Þ ¼ 0; c0mðLÞ ¼ 0 (58)

with

om ¼
c

L
�
p
2
þmp

� �
; cm ¼

ffiffiffiffiffiffiffiffiffiffi
2

mAL

s
sin �

p
2
þmp

� � x

L
. (59)

Because Z L

0

sin2 �
p
2
þmp

� � x

L
dx ¼

1

2
L�

1

2

Z L

0

cosð2m� 1Þ
px

L
dx ¼

L

2
, (60)
Fig. 10. The Kim–Kang bar in compression.
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it can easily be verified that the normalization coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðmALÞ

p
is adjusted in such a way that the cm form

an orthonormal system for the inner product hf jgi ¼
R
½0;L� fgmAdx. The reason why to include the mass mA per

unit length in the differential element will appear later. Let for the moment the response function U be
projected on the first N modes

UðxÞ ¼
XN

m¼1

hCmjUicmðxÞ þ �N ; h�N jcmi ¼ 0; m ¼ 1; . . . ;N (61)

with an orthocomplement eN, that dispenses from taking part in any quarrel over whether it is possible or not
to approximate the boundary condition U 0ðLÞ ¼ F ðEAÞ�1 by means of the homogeneous modal boundary
conditions c0mðLÞ ¼ 0.

Green formulae, that in the considered 1D example merely result from adequate integrations by parts, can
be written for any pair of regular functions

hf 00jgi ¼ mA

Z
½0;L�

f 00gdx ¼ mA

Z
½0;L�

d

dx
ðf 0gÞdx� mA

Z
½0;L�

f 0g0 dx ¼ mA½f 0g�L0 � mA

Z
½0;L�

f 0g0 dx

hf 00jgi � hg00jf i ¼ mA½f 0g� g0f �L0 ð62Þ

and are the key for the computation of coefficients /cm|US in formula (61). As a matter of fact the
substitution of conditions (57) and (58) in the second Green formula

hU 00jcmi � hc
00
mjUi ¼ mA½U 0cm � c0mU �L0 (63)

immediately brings

ðo2
m � o2Þ

c2
hU jcmi ¼ mA½U 0ðLÞcmðLÞ �UðLÞc0mðLÞ �U 0ð0Þcmð0Þ �Uð0Þc0mð0Þ�. (64)

The mA weight that was put on the scalar product can now be justified by the elimination of all physical
constants in the definitive result:

hU jcmi ¼
mAc2cmðLÞ

ðo2
m � o2Þ

F

EA
¼

mc2

E

cmðLÞF

ðo2
m � o2Þ

¼
cmðLÞF

ðo2
m � o2Þ

. (65)

The simplicity of the result marks that the weighted inner product is the exact counterpart of the finite-
dimensional M-product of Section 2, which indeed is not very surprising.

One has finally

UðxÞ ¼
XN

m¼1

cmðxÞcmðLÞ

ðo2
m � o2Þ

F þ �N (66)

from which the orthocomplement has now to be evaluated.

3.3. Application of the method of orthocomplement

(a) Forward step: A double derivation of Eq. (66) with respect to the spatial variable x, brings, with the aid
of Eqs. (57) and (58)

�00N ¼ U 00 �
XN

m¼1

FcmðLÞ

ðo2
m � o2Þ

c00mðxÞ ¼ �
o2

c2
UðxÞ þ

XN

m¼1

FcmðLÞ

ðo2
m � o2Þ

o2
m

c2
cmðxÞ

¼ �
o2

c2
�N �

o2

c2

XN

m¼1

FcmðLÞ

ðo2
m � o2Þ

cmðxÞ þ
XN

m¼1

FcmðLÞ

ðo2
m � o2Þ

o2
m

c2
cmðxÞ ¼ �

o2

c2
�N þ

XN

m¼1

FcmðLÞ

c2
cmðxÞ.
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The orthocomplement eN therefore satisfies

�00N þ
o2

c2
�N ¼

XN

m¼1

F

c2
cmðLÞcmðxÞ; �N ð0Þ ¼ 0; �0N ðLÞ ¼

F

EA
, (67)

where the boundary conditions are easily derived from Eqs. (57), (58) and (66).
As usual, those equations seem much more complicated to solve than the original ones and only need to be

divided into two parts:

�N ¼ ZN þ rN

Z00N ¼
PN

m¼1

F

c2
cmðLÞcmðxÞ; ZNð0Þ ¼ 0; Z0N ðLÞ ¼

F

EA
ðAÞ;

r00N þ
o2

c2
rN ¼ �

o2

c2
ZN ; rNð0Þ ¼ 0; r0N ðLÞ ¼ 0 ðBÞ:

*
(68)

By the change of unknown

yðxÞ ¼ ZN ðxÞ �
F

EA
x (69)

problem (A) turns to

y00 ¼
XN

m¼1

F

c2
cmðLÞcmðxÞ; yð0Þ ¼ 0; y0ðLÞ ¼ 0. (70)

A direct computation shows that a solution to the above equations, is given by

y	ðxÞ ¼
XN

m¼1

F

o2
m

cmðLÞcmðxÞ. (71)

It is the only one since the difference, d, of two solutions must verify

d00ðxÞ ¼ 0; dð0Þ ¼ 0; d0ðLÞ ¼ 0,

that is to say d(x) ¼ ax+b with a ¼ b ¼ 0.
Consequently, the only solution to problem (A) is

ZN ðxÞ ¼
F

EA
x�

XN

m¼1

F

o2
m

cmðLÞcmðxÞ. (72)

The solution to problem (B) has now to be found.
(b) Coordination step: In contrast to the initial formulation, problem (B) does not present any modal

boundary discontinuity at x ¼ L. As a first consequence, the Gibbs phenomenon will not affect the solution.
Moreover, rN, being the solution to a smooth problem, can be easily written as an infinite series

rNðxÞ ¼
X1
m¼1

hrN jcmicmðxÞ. (73)

As in the finite-dimensional examples of Section 2, the first step of computation now consists in determining
the modal projections /ck|rNS as functions of the projections /ck|ZNS. This can be achieved by eliminating
the derivatives and boundary values of rN and ck between Eqs. (68), (58) and the second Green formula

hr00N jcki � hrN jc
00
ki ¼ mA½r0Nck � rNc

0
k�

L
0 . (74)

This brings

�
o2

c2
hrN jcki �

o2

c2
hZN jcki þ

o2
k

c2
hrN jcki ¼ mA½r0N ðLÞckðLÞ � rN ðLÞc

0
kðLÞ � r0N ð0Þckð0Þ þ rN ð0Þc

0
kð0Þ� ¼ 0
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and, after some rearrangements

hrN jcki ¼
o2

o2
k � o2

hZN jcki. (75)

To compute /ZN|ckS, a similar elimination between Eqs. (68), (58) and the second Green formula

hZ00N jcki � hZN jc
00
ki ¼ mA½Z0Nck � ZNc

0
k�

L
0 (76)

yields

XN

m¼1

F

c2
cmðLÞhcmjcki þ

o2
k

c2
hZN jcki

¼ mA½Z0N ðLÞckðLÞ � ZN ðLÞc
0
kðLÞ � Z0Nð0Þckð0Þ þ ZNð0Þc

0
kð0Þ�

¼ mA
F

EA
ckðLÞ ¼

F

c2
ckðLÞ

It is thus possible to write

hZN jcki ¼
F

o2
k

ckðLÞ �
XN

m¼1

cmðLÞhcmjcki

" #
¼

0 if 1pkpN

FckðLÞ

o2
k

if N þ 1pk

8><
>: (77)

The modal components of rN can then be found by substituting for /ZN|ckS from Eqs. (77) into (75).
(c) Backward step: Assembling the ordinary modal sum, the pseudo-static solution (72) and the spectral

development (73) of rN, finally yields

UðxÞ ¼
XN

m¼1

F

ðo2
m � o2Þ

cmðLÞcmðxÞ

( )
þ

F

EA
x�

XN

m¼1

F

o2
m

cmðLÞcmðxÞ þ
X1

m¼Nþ1

o2

o2
m

F

ðo2
m � o2Þ

cmðLÞcmðxÞ

( )
.

(78)

This expression can easily be simplified to the ‘‘accelerated’’ representation

UðxÞ ¼
F

EA
xþ

X1
m¼1

o2

o2
m

F

ðo2
m � o2Þ

cmðLÞcmðxÞ. (79)

The corresponding approximation of the tension inside the rod

TðxÞ ’ F þ EA
XN

m¼1

o2

o2
m

F

ðo2
m � o2Þ

cmðLÞc
0
mðxÞ (80)

has been tested on the aluminium bar of Section 2.4, whose mechanical properties and geometric
dimensions are: Young’s modulus E ¼ 7e10N/m2; mass density m ¼ 2700 kg/m3; length L ¼ 2m ; cross
section area A ¼ 0.0001m2. The result at 4000Hz, for 10 modes (see Table 3), is compared in Fig. 11 to the
Table 3

Eigenfrequencies of the clamped–free bar

Mode number 1 2 3 4 5 6 7 8 9 10

Frequency (Hz) 636.5 1909.4 3182.3 4455.3 5728.2 7001.2 8274.1 9547 10820 12093
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Fig. 11. Axial stress in the clamped–free bar subjected to a prescribed force: - - - - 10-mode ordinary modal sum, ____ 10-mode accelerated

modal sum, JJJ analytical solution.
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analytical solution

TðxÞ ¼ EAU 0ðxÞ with UðxÞ ¼
cF

EAo cos
o
c

L
sin

ox

c
(81)

and to the ill-behaving ordinary modal sum of the same order.
Although the stress has not been put on functional analysis, it should be clear that the quality of results

could be explained by the fact that general Green formulae are not blurred by apparent pointwise
discontinuities.
3.4. The case of natural boundary discontinuities

To confront the method with a natural boundary discontinuity, it can be now supposed that the rod is
submitted to an imposed displacement U0 at x ¼ 0, with a free condition, T ¼ 0 at x ¼ L. Equations of motion
can be written

U 0ðxÞ þ
o2

c2
UðxÞ ¼ 0; Uð0Þ ¼ 1; U 0ðLÞ ¼ 0. (82)

The modes and eigenfrequencies, cm, om, to be considered are the same as before and the application of
Green’s formula to the pair U, cm gives the modal projections as

hcmjUi ¼
EAU0

o2
m � o2

c0mð0Þ. (83)

From this, the orthocomplement eN(x) is defined by

UðxÞ ¼
XN

m¼1

EAU0

o2
m � o2

c0mð0ÞcmðxÞ þ �N ðxÞ (84)

and appears after some calculations as the solution to the boundary problem

�00N þ
o2

c2
�N ¼

XN

m¼1

mAU0c
0
mð0ÞcmðxÞ; �Nð0Þ ¼ U0; �0N ¼ 0. (85)
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Splitting up (85) into two sub-problems results in

�N ¼ ZN þ rN

Z00N ¼
PN

m¼1

mAU0c
0
mð0ÞcmðxÞ; ZN ð0Þ ¼ U0; Z0NðLÞ ¼ 0 ðAÞ;

r00N þ
o2

c2
rN ¼ �

o2

c2
ZN ; rN ð0Þ ¼ 0; r0NðLÞ ¼ 0 ðBÞ:

*
(86)

By the change of unknown ZN ¼ U0 þ z, problem (A) becomes

z00 ¼ �
XN

m¼1

mAU0c
0
mð0ÞcmðxÞ; zð0Þ ¼ 0; z0ðLÞ ¼ 0. (87)

Uniqueness of the solution results from the same argumentation as before. Searching for z as a linear
combination of cm, m ¼ 1,y,N, then leads to

ZN ¼ U0 �
XN

m¼1

EAU0

o2
m

c0mð0ÞcmðxÞ. (88)

Problem (B) can now be solved in writing down the second Green formulae
(i)
 for the pair rN, cm: hrN jcki ¼ ðo
2=ðo2

k � o2ÞÞhZN jcki;

(ii)
 for the pair ZN, cm:

hZN jcki ¼
1

o2
k

EAU0c
0
kð0Þ �

XN

m¼1

EAU0dkmc
0
kð0Þ

" #
¼

0 if 1pkpN;
EAU0

o2
k

c0kð0Þ if N þ 1pk:

8><
>: (89)
It comes from successive eliminations that

hrN jcki ¼

0 if 1pkpN ;

o2

o2
k

EAU0

o2
k � o2

c0kð0Þ if N þ 1pk:

8><
>: (90)

Combining Eqs. (83), (88) and (90) then yields the hybrid spectral solution

UðxÞ ¼
XN

m¼1

EAU0

o2
m � o2

c0mð0ÞcmðxÞ þU0 �
XN

m¼1

EAU0

o2
m

c0mð0ÞcmðxÞ þ
X1

m¼Nþ1

o2

o2
m

EAU0

o2
m � o2

c0mð0ÞcmðxÞ. (91)

The expression can be simplified to the minimum accelerated form

UðxÞ ¼ U0 þ EAU0

X1
m¼1

o2

o2
m

c0mð0Þ
o2

m � o2
cmðxÞ. (92)

Fig. 12 shows a comparison between a 10-mode approximation of expression (92), an ordinary spectral sum
and the analytical solution

UðxÞ ¼ U0 cos
ox

c
þ tg

oL

c
sin

ox

c

� �
. (93)

At the considered stage of approximation, the ordinary sum looks quite inaccurate, and the number of
modes is too low for the Gibbs phenomenon to appear. The Gibbs oscillation of a 100-mode ordinary sum can
indeed be detected on the much more refined drawing of Fig. 13; it is of some interest to remark that the
phenomenon does not occur unless the boundary condition begins to be correctly taken into account.
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Fig. 12. Axial displacement in the clamped–free bar subjected to a prescribed displacement: - - - - 10-mode ordinary modal sum,
____ 10-mode accelerated modal sum, JJJ analytical solution.

Fig. 13. Axial displacement, clamped–free bar subjected to a prescribed displacement: - - - - 100-mode ordinary modal sum, ____ 100-mode

accelerated modal sum, JJJ analytical solution.
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4. Acoustic receptance at the boundary of a rigid cavity

4.1. Basic problem

Systems including acoustic parts are of a great practical importance, and are generally analysed by means of
heavy boundary element methods. For the discussion and effective design of such systems, it should be very
attractive to introduce impedance relations, pB ¼ ZB AvA, describing the acoustic pressure, pB, over a region
B when the velocity vA is imposed on a region A of the boundary. That way of reasoning from displacements
to efforts being induced by the exchange between primal and dual variables that characterizes the basic
Helmholtz equation, it can be easily seen that acoustic finite element modal analyses should be able to deliver
such quantities. The approach has however to face two major difficulties: first, the boundary discontinuity that
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affects the modal superposition; and second, the Helmholtz singularity at 0Hz, that complicates modal
corrections.

It is thus proposed in the present section to analyse, from both theoretical and practical points of view, the
general Neumann boundary problem that rules the pressure p inside an acoustic region O when motions are
imposed on the boundary qO. The precise problem consists in finding p such that

r2pþ
o2

c2
p ¼ 0 in O;

qp

qn
¼ D on qO, (94)

where o is the (circular) frequency of vibration; c, the speed of sound; q/qn, the outward normal derivative to
the boundary; and where, lastly, D ¼ �iorV n denotes the given normal quantity of acceleration at the
boundary, relative to the imposed normal velocity, Vn, and the mass, r, per unit volume of fluid.

Green formulae for the L2 inner product /|S

hr2f jgi ¼ � hrf jrgi þ

Z
qO

qf

qn
gds,

hr2f jgi � hr2gjf i ¼

Z
qO

qf

qn
gds�

Z
qO

qg

qn
f ds ð95Þ

can be invoked to compute the projections, /cm|pS, of the solution p on the orthonormal family of ‘‘rigid
cavity’’ eigenmodes, cm, at eigenfrequencies om, that result from the solution of the homogeneous problem

r2cm þ
o2

m

c2
cm ¼ 0 in O;

qcm

qn
¼ 0 on qO. (96)

As a matter of fact, substituting for the boundary values and derivative of p, cm from Eqs. (94), (96) into the
second Green formula brings

hcmjpi ¼
c2

o2
m � o2

Z
qO

cmDds. (97)

Any attempt to express p as an ordinary superposition Shcmjpicm will lead however to the same conclusion
as in the paper by Kim and Kang, and to the disappointing results that have already been shown in Fig. 2. The
boundary velocity equation has, indeed, to be satisfied with a combination of homogeneous modes, each of
which has a pointwise zero velocity. The explicit introduction and computation of the orthocomplement will
avoid the difficulty and lead to the same general results as before, despite the additional singularity at 0Hz.

4.2. The method of orthocomplement

(a) Forward step: Considering the finite-dimensional vector space, F ¼ ððcmÞÞm¼1;...;N , spanned by the first N

eigenmodes, it seems trivial to write the solution to problem (94) as the sum of its orthogonal projection onto
F, plus an orthocomplement, eN, orthogonal to F

p ¼
XN

m¼1

hpjcmicm þ �N . (98)

From Eqs. (94) and (97) the orthocomplement is seen to satisfy

r2�N þ
o2

c2
�N ¼

XN

m¼1

cm

Z
qO

cmDds

� �
in O;

q�N

qn
¼ D on qO. (99)

The decomposition in two nested sub-problems, A, B, takes here the form

�N ¼ ZN þ rN

r2ZN ¼
PN

m¼1

cm

R
qO cmDds

� 	
in O;

qZN

qn
¼ D on qO ðAÞ

r2rN þ
o2

c2
rN ¼ �

o2

c2
ZN in O;

qrN

qn
¼ 0 on qO ðBÞ

*
(100)
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It should be easily recognized that (A) is a Laplacian Neumann boundary problem, the solution of which, if
there is one, can only be determined within an arbitrary constant. Solvability imposes on the forcing terms to
be self-equilibrated, or, so to say, orthogonal to the kernel of the underlying linear operator [32]. The last
condition can be written

�

Z
O

gN dvþ

Z
qO

Dds ¼ 0. (101)

It can be suggested to make an explicit use of the 0Hz constant acoustic normalized eigenmode,
c1 ¼ ðmeas OÞ�1=2, thereby writing

�

Z
O
c1gN dvþ

Z
qO

c1Dds ¼ 0. (102)

Indeed, it can be easily verified that Eq. (102) is fulfilled by D and gN ¼
PN

m¼1

cm

R
qO cmDds

� 	
, since

�

Z
O
c1

XN

m¼1

cm

Z
qO

cmDds

� �
dvþ

Z
qO

c1Dds

¼ �
XN

m¼1

Z
O
c1cmdv

� � Z
qO

cmDds

� �
þ

Z
qO

c1Dds

¼ �
XN

m¼1

d1m

Z
qO

cmDds

� �
þ

Z
qO

c1Dds ¼ 0.

At the present stage of discussion, the conclusion is thus that problem (A) admits an infinite number of
solutions, differing one from the other by an arbitrary constant.

(b) Coordination step: Problem (B) being a ‘‘smooth’’ dynamical problem with ‘‘continuous’’ homogeneous
boundary conditions, its solution, rN, can be viewed as a strict modal superposition

rN ¼
X1
k¼1

hrN jckick. (103)

Following the proposed method of orthocomplement, modal projections should be now evaluated in two
steps. The first step has been seen to consist in determining the modal projections hckjrNi as functions of the
projections hckjZNi; actually, substituting for the boundary values and derivatives of rN, ck from Eqs. (103),
(96) into the second Green formula gives

hrN jcki ¼
o2

o2
k � o2

hZN jcki. (104)

The second step is to compute hZN jcki; and, indeed, substituting Eqs. (100) and (95) in the second Green
formula yields

o2
khZN jcki ¼ c2

Z
qO

ckDds�
XN

m¼1

dkm

Z
qO

cmDds

� �" #
. (105)

This brings the conclusion that for any k41

hZN jcki ¼
c2

o2
k

Z
qO

ckDds�
XN

m¼1

dkm

Z
qO

cmDds

� �" #

¼

0 if 1okpN;

c2

o2
k

R
qO ckDds if Nok:

8><
>: ð106Þ

The singularity being clearly of order s ¼ 1, there is however nothing surprising about the fact that
Eq. (105) degenerate to an identity 0 ¼ 0 when k ¼ 1. As in Section 2.2, the indetermination can be eliminated
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by setting

hZN jc1i ¼ 0. (107)

By combining this additional condition and Eqs. (104), (106), it becomes possible to compute all
components hrN jcki, by means of the formulae

hrN jcki ¼
o2

o2
k � o2

hZN jcki ¼

0 if 1pkpN ;

o2

o2
k

c2

o2
k � o2

R
qO ckDds if Nok:

8><
>: (108)

On the other hand, by fixing the constant that was left aside in the preliminary discussion, condition (107)
fully determines the solution to problem (A), which can be reformulated as

r2ZN ¼
PN

m¼1

cm

R
qO cmDds

� 	
in O;

qZN

qn
¼ D;

ðmeas OÞ�1=2hZN jc1i ¼
R
O ZN dv ¼ 0:

8><
>: (109)

(c) Backward step: As a provisory conclusion, the solution p to the acoustic problem results from the
superposition of an ordinary modal sum up to the order N, a pseudo-static term, and an accelerated modal
series:

p ¼
XN

m¼1

ck

c2

o2
k � o2

Z
qO

ckDds

( )
þ ZN þ

X1
m¼Nþ1

ck

o2

o2
k

c2

o2
k � o2

Z
qO

ckDds

( )
, (110)

where ZN is the unique solution to (109).

4.3. Finite element solution

For the purpose of numerical analysis, matrices H and Q, must be classically synthesized, in such a way thatZ
O
rf rg dx ¼ f H g;

Z
O

f g dx ¼ f Q g

for every pair f, g of functions in H1ðOÞ, approximated by nodal vectors f and g. Numerical modes and
eigenfrequencies can then be defined by solving

ðH� o2
kQÞWk ¼ 0. (111)

Assembling the pseudo-static problem is a little less trivial. The first step, as usual, consists in building the
associated weak formulation. Namely, the field equation, multiplied by dZ 2 H1ðOÞ, must be integrated over
the domain and transformed by means of Green’s formula to take the boundary condition into account.
Solution ZN can thereby be characterized by the variational equality

8dZ 2 H1ðOÞ :

Z
O
rðdZÞ:rZN dvþ

Z
O
dZgN dv�

Z
qO

dZDds ¼ 0, (112)

where D is the prescribed boundary data and gN is defined, as in Eq. (101) by

gN ¼
XN

m¼1

cm

Z
qO

cmDds

� �
.

Source vectors F and GN, respectively on qO and inside O, being defined such that

dgTF ’

Z
qO

dZDds, (113)

dgTGN ’

Z
O
dZgN dv, (114)
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the finite element discretization of Eq. (112) gives the nodal pseudo-static pressure vector gN as the solution to

8dg : dgTHgN ¼ dgTF� dgTGN (115)

or, in an equivalent matrix form, to

HgN ¼ F�GN . (116)

It now remains to be remarked that the subsidiary orthogonality condition (107) can be written

STQgN ¼ 0 (117)

with a constant vector S standing for a basis of the subspace of all constant functions.
Using the projector theorem of Appendix B then delivers the definitive expression of the pseudo-inverse

solution

gN ¼ ð1�PQÞðlPþHÞ�1ðF�GN Þ for any la0.

It can be noted that P ¼ SðStSÞ�1St is the full constant matrix

P ¼
1

N

1 1 1

1 1 1

1 1 1

2
6664

3
7775, (118)

where N is the total number of nodes. It should be observed, in addition, that this operator is ill-conditioned
for small values of l since lPþH ’ H, as well as for large values, since, in that case, lPþH ’ lP. The use
of intermediate values of l, of the order of magnitude N Hk k, is thus highly recommended.

4.4. Numerical example of a 2D cavity

The preceding formulae have been tested in a 2D-cavity filled with air, at the standard 20 1C temperature,
that is to say, with speed of sound c ¼ 340m/s and mass density r ¼ 1.2 kg/m3. The cavity is a 0.7m� 0.3m
rectangle; as indicated on Fig. 14 a unit acceleration is imposed on a small segment Ls, at the boundary of
the cavity.

The 10 first eigenfrequencies are given in Table 4.
Fig. 15 shows the acoustic pressures and velocities obtained by ordinary modal summation, direct

computation, and hybrid spectral formulae.
Fig. 14. 2D acoustic cavity.

Table 4

Eigenfrequencies of the acoustic cavity

Mode number 1 2 3 4 5 6 7 8 9 10

Frequency (Hz) 0 242.9 486.2 567.2 617 730.3 747 924.6 975.4 1128
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Fig. 15. Acoustic pressure in the 2D acoustic cavity: (a) ordinary modal sum; (b) hybrid modal sum; (c) direct computation. Acoustic

velocity: (d) ordinary modal sum; (e) hybrid modal sum; (f) direct computation.
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ARTICLE IN PRESS
J.-M. Lagache et al. / Journal of Sound and Vibration 310 (2008) 313–351 343
The minimal hybrid formula of order N ¼ 1,

p ¼ �
c2

o2

1

measðOÞ

Z
qO

Ddsþ Z1 þ
X1
m¼2

cm

o2

o2
m

c2

o2
m � o2

Z
@O

cmDds

( )
(119)

with

r2Z1 ¼
1

measðOÞ

R
qO Dds in O;

qZ1
qn
¼ D;R

O Z1 dv ¼ 0

8><
>: (120)

is of special interest and will be the object of a future standard development.
5. Conclusion

The above computation of the acoustic receptance at the boundary of a cavity has been used to place and
design Helmholtz resonators inside automotive cells. A precise account of the coupling technique that mixes
together numerical and analytical computations will be given in a forthcoming paper.

The proposed technique can also address mechanical systems of a greater complexity than resonators. By a
repeated use of the proposed method, it seems indeed possible to assemble the acoustic impedances that
determine the coupled vibro-acoustic field. This approach would fill a gap between modal analysis and
acoustics, and first examples are presently under study.

Beyond coupling applications, a connection can be made with much more general problems of modal
synthesis. Indeed, the various kinds of operations that constitute the pyramid of modal methods can be
summarized as follows:
(a)
Fig
receptance synthesis aims to equip subsystems of correct receptance relations, which is perfectly suited for
experimental or design applications involving a low number of conception parameters;
(b)
 with increasing dimension of matrices, the preceding approach, that involves frequency dependent full
matrices, and relatively complex rules of assembly, becomes quite ineffective and one must pose problems
. 16. Receptance at the free end of the fixed–free chain: _____ exact;� 1 mass equivalent oscillator; J 2 mass equivalent oscillator.
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of ‘‘model reduction’’, which consist in finding constant mass or rigidity operators that approximately
describes the behaviour of subsystems;
(c)
 lastly, assembling the local mass and stiffness operators to describe the behaviour of a global structure, too
complex to be analysed as a whole, is the proper task of modal synthesis.
The paper concentrated on level (a) and maybe some readers have wondered why many quotations in the
bibliography are in fact relevant to levels (b) and (c). The explanation is in the following.

The dynamic stiffness of a subsystem 1, is given by

f1 ¼ ðK11 �M11o2Þ � ðK12 �M12o2ÞðK22 �M22o2Þ
�1
ðK21 �M21o2Þ


 �
x1 (121)

provided the complementary part, 2, is free of external efforts.
The problem of model reduction consists in finding K1 and M1 such that

f1 ’ ðK1 �M1o2Þx1. (122)

In this new context, the formulae that have been developed in the present paper can be read, and used, as
general algebraic expressions of inverse matrices. Let it be supposed that in the considered example, the
complementary part, 2, is at rest on a given support. The global stiffness matrix K is then invertible and one
can use Eq. (21) to write the approximate identity

ðK1 �M1o2Þ U1 DðoÞ �Dð0Þ½ �UT
1 þ P1K

�1PT
1


 �
� 1 ’ 0. (123)

A Taylor expansion with respect to o2 leads to the best low-frequency approximations

K1 ¼ ðP1K
�1PT

1 Þ
�1, (124)

M1 ¼ ðP1K
�1PT

1 Þ
�1F1O�2O�2FT

1 ðP1K
�1PT

1 Þ
�1. (125)

The receptances that can be computed at the end of the 100-mass chain of Section 2 after reduction to a
single oscillator or a more complex 2-mass oscillator are drawn in Fig. 16. Only 20 modes have been used to
write Eqs. (124) and (125). Other techniques are presently under study, and especially the spectral inversion of
ðK22 �M22o2Þ in Eq. (121), that leads to revisit fixed-interface computations [22]. Clearly there is still quite a
way to go, but Eqs. (124) and (125) are interesting examples of model reduction formulae with static modes.
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Appendix A. Elementary Moore–Penrose pseudo-inverses for rectangular systems of maximum rank

This annex is devoted to the pseudo-inverse operations that are required to deal with the 0Hz-singularity of
stiffness matrices of floating systems. Its reading only requires some acquaintance with the basic notions of
linear algebra like image, kernel, and transposition. A frequent use will be made of the elementary lemma that
stipulates that in usual orthogonal coordinates

ðKer SÞ? ¼ Im ST. (A.1)

This will be referred to as Lagrange lemma, since it constitutes the very basis of virtual work methods [33].
One will consider here systems in the form

Sx ¼ f (A.2)

with S a rectangular (p,q)-matrix, p 6¼q, satisfying the maximum rank condition

rankðSÞ ¼ minðp; qÞ. (A.3)
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Such systems cannot be solved in an ordinary sense since they either suffer from overdetermination when
p4q or from indetermination when poq. Least-squares techniques can then either be used to deliver
approximate solutions or to make a choice among an infinity of solutions. The associated matrices are known
as Moore–Penrose pseudo-inverses since it was recognized that they satisfied the full axiomatic set that had
been earlier devised by the two authors for the abstract definition of pseudo-inverses.

(a) Overdeterminated systems: The number p of equations being greater than the number q of unknowns,
one cannot find any solution to the inversion problem. The difficulty can be lifted by replacing the strict
equality (A.2) by the minimization of the distance from Sx to f:

Find xn that minimizes F ðxÞ ¼ 1
2
Sx� fk k2.

For the usual Euclidian norm, function F and its first variation dF have the following expressions:

F ðxÞ ¼ 1
2
xTSTSx� 1

2
ðxTSTf þ fTSxÞ þ 1

2
fTf ¼ 1

2
hSTSxjxi � hSTfjxi þ 1

2
fTf (A.4)

dF ðxÞ ¼ 1
2
hSTSdxjxi þ 1

2
hSTSxjdxi � hSTfjdxi ¼ hSTSx� STfjdxi (A.5)

where o4 stands for the Euclidian inner product.
Matrix S is constituted by q columns of p terms, p4q. These columns are linearly independent thanks to the

maximum rank hypothesis. Consequently, the matrix S
T
S in the expression of dF, is invertible. As a matter of

fact, every element a of its kernel is shown to be zero by the following chain of implications:

STSa ¼ 0) aTSTSa ¼ 0) hSajSai ¼ 0) Sa ¼ 0) a ¼ 0.

The stationnarity condition dF(x*) ¼ 0 for every dx, then brings the expression of the Moore–Penrose
pseudo-inverse

xn ¼ ðSTSÞ�1STf. (A.6)

The vector Sx* is the element of Im S which lies at the shortest distance of the given f. The orthogonal
projector on the subspace generated by the columns of S, is thus given by

P ¼ SðSTSÞ�1ST. (A.7)

One can also consider any positive definite symmetric matrix M and decide to minimize the M-distance
instead of the Euclidian distance

GðxÞ ¼ 1
2
Sx� fð Þ

TM Sx� fð Þ ¼ 1
2
xTSTMSx� 1

2
xTSTMf þ fTMSx
� 	

þ 1
2
fTMf

¼ 1
2
hSTMSxjxi � hSTMfjxi þ 1

2
fTMf

The first variation dG can now be formulated as

dGðxÞ ¼ hSTMSx� STMfjdxi. (A.8)

This leads to the following general expressions of pseudo-inverses and projectors

x	M ¼ ðSTMSÞ�1STMf, (A.9)

PM ¼ SðSTMSÞ�1STM. (A.10)

(b) Underdeterminated systems: The number p of equations is now smaller than the number q of unknowns.
The p equations are linearly independent, by the maximum rank hypothesis. System (A.2) then admits an
infinity of solutions. The minimization of an appropriate norm permits the computation of distinguished
solutions to the considered system. The choice of the Euclidian norm, for instance, will lead to the discussion
and solution to

Find xn that minimizes HðxÞ ¼ 1
2 xk k2; subject to Sx� f.

Function H and its first variation dH can be expressed as

HðxÞ ¼ 1
2
xTx; dHðxÞ ¼ xTdx ¼ hxjdxi. (A.11)
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At the optimum, every admissible dx- that is to say every dx satisfying, S dx ¼ 0 or, in other words, every
element of Ker S—cannot alter the first variation dHðx	Þ ¼ hx	; dxi and thus must be orthogonal to x*. The
optimum x* therefore belongs to the orthogonal of Ker S which, by Lagrange lemma, is also the image of ST.
There thus exists some LARp, such that

x	 ¼ STK. (A.12)

This new vector is known as the vector of Lagrange’s multipliers. It satisfies, because of the initial equation

SSTK ¼ f. (A.13)

The operator S ST is invertible, by a direct transposition of the argumentation about the term ST S in the
previous paragraph. In this way, one finds the following expression of x*:

x	 ¼ STðSTSÞ�1f. (A.14)

The general solution to the initial system is therefore

x ¼ STðSSTÞ
�1f þ Sa, (A.15)

with an arbitrary aARp.
As in the preceding paragraph, any non-Euclidian metric, based on a symmetric positive definite matrix M,

can be substituted to the ordinary Euclidian metric. Problem (A.11) turns to

Find xM that minimizes JðxÞ ¼ 1
2 xk k2M ¼

1
2x

TMx subject to Sx� f.

The first variation can now be written as

dJðxÞ ¼ xTMdxþ dxTMx ¼ hMxjdxi. (A.16)

The condition of stationnarity at xM now stipulates that M xM is orthogonal to Ker S and thus belongs to
ImST. One can introduce a vector of Lagrange multipliers such that

MxM ¼ STK (A.17)

and finally write the pseudo-inverse solution as

xM ¼M�1STðSM�1STÞ
�1f. (A.18)

Appendix B. Special techniques of pseudo-inversion for square singular stiffness matrices; the projector theorems

Pseudo-inverse and projector formulae of Appendix A permits the solution of singular systems associated
with a square symmetric singular matrix K when a spanning matrix S of the kernel of K is occasionally at
disposal. Studying that case is really worthwhile, because the kernel of every mechanical floating stiffness
matrix reduces to a set of known rigid motions. Although the considered matrices are not of maximum rank, a
considerable amount of computations can be spared by an adequate use of the proposed formulae.

Indeed, let

Kx ¼ f. (B.1)

be a system of the preceding type, with K ¼ KT, det(K) ¼ 0 and S, a p� q matrix of minimum rank, such that

KerðKÞ ¼ ImðSÞ ¼ y 2 Rpj9b 2 Rq : y ¼ Sb

 �

. (B.2)

System (B.1) is soluble iff f belongs to the image of K, or by Lagrange’s lemma is orthogonal to Ker(K), or
in other words, iff it satisfies the integrability condition:

STf ¼ 0. (B.3)

In this case, the solution is not unique. It is usually written, by a mere argument of linearity, as

x ¼ x0 þ Sa (B.4)

with x0 a distinguished solution and Sa, a in Rq, an arbitrary element of Ker(K).
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The point is to produce additional conditions or relations-say Ax ¼ 0-that could constrain the initial system
to deliver a well-posed problem

Kx ¼ f;

Ax ¼ 0;

(
(B.5)

whose unique solution, once computed, could be taken as the special solution x0. Matrix K is a p� p matrix
with rank p– q, since q, by (B.2), is the dimension of Ker(K). Additional restrictions should thus bring q

independent relations compatible with system (B.1). Given an arbitrary positive definite matrix M, a very
simple choice consists in imposing on the solution to be M-orthogonal to Ker(K). This does not only bring the
correct number of equations but also ensures compatibility and uniqueness. Indeed, the corresponding x0, or
say xM, is the only point of intersection of the set of solutions with a complementary M-orthogonal subspace.

Two theorems are now proposed, which can be of a great help in effective mechanical computations:
Theorem 1 for the canonical metric M ¼ 1; Theorem 2, as a corollary, for an arbitrary metric M.

(a) Theorem 1. As far as f obeys the integrability condition, the singular square system admits the general

solution:

x ¼ lPþ Kð Þ
�1f þ Sa, (B.6)

where l is a totally arbitrary non-zero number; a, a totally arbitrary vector in Rq; and, P ¼ SðSTSÞ�1ST, the

orthogonal projector on the kernel of K. The distinguished solution

xn ¼ ðlPþ KÞ�1f (B.7)

is totally independent of l and can be identified to the unique element of Im(K) that satisfies Kx ¼ f. It

corresponds to the SVD inverse of the symmetric matrix K, or, by Lagrange lemma, to the only vector that

satisfies both Kx ¼ f and STx ¼ 0.

For each l 6¼0, lP+K is invertible. Indeed, Ker(K) and Im(K) form a pair of complementary subspaces,

Rq ¼ ImðKÞ �KerðKÞ (B.8)

along which any vector can be decomposed in a unique manner. Because lPzAKer(K), and KzAIm(K), any
vector z satisfying

ðlPþ KÞz ¼ 0 (B.9)

(with l 6¼0) is necessarily such that

Pz ¼ 0 and Kz ¼ 0.

This implies z ¼ 0, since the considered vector simultaneously belongs to the two complementary subspaces.
The operator, whose kernel reduces itself to zero is invertible.

As a consequence, there exists some x* that verifies

x	 ¼ ðlPþ KÞ�1f (B.10)

or, equivalently,

lPx	 þ Kx	 ¼ f.

The vector Kx* is an element of Im(K). This is also valid for f, which is supposed to satisfy the integrability
condition. On the other hand, lPx* is an element of Ker(K). Using the same argument as before, one has
necessarily the two separate conditions

Kx	 ¼ f; Px	 ¼ 0.

The conclusion is, first, that x* is a solution to the considered system, and, second, that it lies in the image,
Im(K).
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Finally, uniqueness and independence with respect to l result from the fact that two solutions x1, x2 that
belong to Im(K) necessarily coincide, since their difference must simultaneously satisfy

x1 � x2 2 ImðKÞ; x1 � x2 2 KerðKÞ.

(b) Theorem 2. When f satisfies the integrability condition, the singular square system admits the general

solution:

x ¼ ð1�PMÞðlPþ KÞ�1f þ Sa, (B.11)

where l is a totally arbitrary non-zero number; a, a totally arbitrary vector in Rq; and where P ¼ SðSTSÞ�1ST

and PM ¼ SðSTMSÞ�1STM are the orthogonal projectors on the kernel of K, respectively for the Euclidian

metric and the M-orthogonal one.
The distinguished solution

xM ¼ ð1�PMÞðlPþ KÞ�1f (B.12)

is the unique element M-orthogonal to Ker(K) that satisfies Kx ¼ f, or equivalently, the only vector that satisfies

both Kx ¼ f and STMx ¼ 0. This last conditions define a unique linear peudo-inverse operator KyM½ � whose

expression is given by Eq. (B.12).

The point is clearly to exhibit a solution xM satisfying STMxM. By Theorem 1, such an xM can be searched
for under the form

xM ¼ xn þ Sb (B.13)

with an unknown vector b satisfying the orthogonality condition

STMxn þ STMSb ¼ 0. (B.14)

One finds in that way

xM ¼ 1� SðSTMSÞ�1STM
� 

xn (B.15)

with the expression (A.10) of the M-projector on the right-hand side of the formula.

Appendix C. Laurent expansion of the dynamic response at 0Hz

Laurent or Taylor expansions of frequency response functions are of a great help in theoretical
developments. Taylor formulae for fixed systems can be found, for example, in Ref. [19]. The present appendix
only addresses the singular case of a floating system with s rigid modes.

Starting from the algebraic identity

1

o2
m � o2

¼
1

o2
m

1�
o2

o2
m

� ��1
¼

1

o2
m

1þ
o2

o2
m

þ
o4

o4
m

þ � � � þ
o2k

o2k
m

þ � � �

� �
(C.1)

any ordinary spectral sum can take the form of a Laurent expansion at origin:

xðoÞ ¼ �
1

o2
x0 þ x1 þ o2x2 þ o4x3 þ � � � þ o2k�2xk þ � � � . (C.2)

The successive coefficients are given by

x0 ¼
Xs
m¼1

WmWT
mf; . . . ; xk ¼

XN

m¼sþ1

WmWT
m

o2k
m

f ð1pkpN � 1Þ: (C.3)

Putting down the Laurent expansion inside the basic equation of motion yields a cascade of identification
relations that are of great interest in the interpretation of the 0Hz modal contribution

Kx0 ¼ 0 ! Kx1 þMx0 ¼ f ! Kx2

�Mx1 ¼ 0 ! � � � ! Kxk �Mxk�1 ¼ 0 ! � � � ðC:4Þ
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(a) Coefficient x0: The first equation in Eq. (C.4) means that x0 is a rigid motion. If S denotes the spanning
matrix of the set of such displacements, one may write

Kx0 ¼ 0) x0 2 KerK) 9c : x0 ¼ Sc. (C.5)

Looking carefully at the second equation then brings the following implications:

Kx1 þMx0 ¼ f ) ðMx0 � fÞ 2 ImK) STðMx0 � fÞ ¼ 0. (C.6)

As a direct consequence of the two right-hand relations, one now observes that the unknown vector g
satisfies

STMSc ¼ STf, (C.7)

which finally yields

x0 ¼ SðSTMSÞ�1STf. (C.8)

In the most common case when s ¼ 6, this last formula can be easily interpreted in terms of rigid body
accelerations:
STfAR6 is the vector of resultants and moments corresponding to the given forces f;
S
T
MS is the condensed 6� 6 mass matrix that rules rigid motions;

y ¼ (STMS)�1STfAR6 gives the six intrinsic components of the rigid acceleration;
Sy ¼ S(STMS)�1STf, finally, is the expression on the physical degrees of freedom of the rigid body
acceleration field.
One gets, by identification with the first of Eq. (C.4), the interesting formula

x0 ¼ SðSTMSÞ�1STf, (C.9)

Xs
m¼1

WmWT
m ¼ SðSTMSÞ�1ST, (C.10)

(b) Coefficient X1: Eq. (C.8) can now be carried into the second identification equation to deliver

Kx1 ¼ f �MSðSTMSÞ�1STf. (C.11)

Singular linear systems of this type have been considered in Appendix B. The system is solvable since ST

times the second member makes 0, which is not surprising because the second member results from the
superposition of external loads with related inertial forces. According to the discussions of Appendix B, the
solution can be determined only within an arbitrary rigid motion.

Because Laurent coefficients cannot suffer such an indetermination, subsidiary conditions have to be found
elsewhere in the cascade (C.4), and more precisely in the third relation, which is the only other equation that
contains x1. As a matter of fact, one can write

Kx2 �Mx1 ¼ 0)Mx1 2 ImK) STMx1 ¼ 0; (C.12)

which are conditions of the type discussed in Appendix B. Eqs. (C.11) and (C.12) and the second projector
theorem of Appendix B then bring

x1 ¼ ð1�PM ÞðlPþ KÞ�1 1�MSðSTMSÞ�1ST
� 

f. (C.13)

Considering the expression (A.10) of PM, one can now remark the complete symmetry between the left and
right factors, and write

x1 ¼ 1� SðSTMSÞ�1STM
� 

ðlPþ KÞ�1

1�MSðSTMSÞ�1ST
� 

f. ðC:14Þ
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or, more concisely,

x1 ¼ ð1�PM ÞðlPþ KÞ�1ð1�PM Þ
Tf. (C.15)

A very important relation can be obtained from a mere comparison with Eq. (C.3)

XN

m¼sþ1

WmWT
m

o2
m

f ¼ ð1�PMÞðlPþ KÞ�1ð1�PMÞ
Tf. (C.16)

The coefficient x1, which coincides with the elastic displacement under external and inertial forces after
‘‘filtration’’ of rigid modes, corresponds to modern versions of what is generally called ‘‘the inertia relief’’
displacement or mode. The computation of such a displacement is a standard option in most finite element
codes. Ancient versions, devoted to stress computation in uniformly accelerated vessels and not to modal
synthesis however, replace the correct filtration of rigid modes by more simple, but inadequate, isostatic
support conditions.

Formulae for higher-order coefficients can be derived in the same manner. For the sake of brevity, however,
they will not be developed in the present study.
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